Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Vet Ital ; 59(1): 83-92, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37994640

RESUMO

The retrovirus bovine leukemia virus (BLV) might produce abnormal immune function, associated with susceptibility to developing other infectious diseases, including mastitis. This study aimed to determine the proviral load and cytokines gene expression in peripheral blood mononuclear cells (PMBC) and milk somatic cells (SC) in BLV-infected and non-infected cattle. Of 27 BLV-infected cows in PBMC, 17 (62.96%) had a high proviral load (HPL), and 10 (37.04%) had a low proviral load (LPL). All SC samples had low proviral load (LPL-SC). Higher IFN-γ and IL-10 expression, and lower IL-12 and IL-6 expression, were found in PBMC from BLV-infected compared to BLV non-infected cattle. Moreover, higher IFN-γ, IL-12, and IL-6 expression, and lower IL-10 expression were observed in cattle with LPL-PBMC compared to HPL-PBMC. In milk samples, lower IFN-γ and higher IL-12 mRNA expression were observed in LPL-SC compared to BLV non-infected cattle in SC. IL-10 and IL-6 expression mRNA was significantly lower in LPL-SC than in SC from BLV non-infected cattle. This study shows that milk SC maintains lower proviral load levels than PBMC. This first report on Th1 and Th2 cytokines expression levels in SC may be relevant to future control strategies for BLV infection, mastitis, and udder health management.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Mastite , Feminino , Bovinos , Animais , Citocinas/genética , Leucócitos Mononucleares , Interleucina-10 , Vírus da Leucemia Bovina/genética , Leucose Enzoótica Bovina/genética , Provírus/genética , Leite , Interleucina-6 , Interleucina-12 , RNA Mensageiro , Mastite/veterinária
2.
BMC Vet Res ; 19(1): 185, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784057

RESUMO

BACKGROUND: The Kumamoto strain of Japanese Brown (JBRK) cattle is a sub-breed of Wagyu and has a different genetic background than that of Japanese Black (JB) cattle. Bovine leukemia virus (BLV) is the pathogen causing enzootic bovine leukosis (EBL), the predominant type of bovine leukosis (BL). EBL is one of the most common bovine infectious diseases in dairy countries, including Japan. Some host genetic factors, including the bovine leukocyte antigen (BoLA)-DRB3 gene, have been associated with the proviral load (PVL) of BLV and/or onset of EBL. Here, we determined the number of BL cases by analyzing prefectural case records in detail. We measured the PVL of BLV-infected JBRK cattle and compared it with that obtained for other major breeds, JB and Holstein-Friesian (HF) cattle. Finally, the relationship between PVL levels and BoLA-DRB3 haplotypes was investigated in BLV-infected JBRK cattle. RESULTS: We determined the number of BL cases recorded over the past ten years in Kumamoto Prefecture by cattle breed. A limited number of BL cases was observed in JBRK cattle. The proportion of BL cases in the JBRK was lower than that in JB and HF. The PVL was significantly lower in BLV-infected JBRK cattle than that in the JB and HF breeds. Finally, in BLV-infected JBRK cattle, the PVL was not significantly affected by BoLA-DRB3 alleles and haplotypes. BoLA-DRB3 allelic frequency did not differ between BLV-infected JBRK cattle with low PVL and high PVL. CONCLUSIONS: To our knowledge, this is the first report showing that BL occurred less in the JBRK population of Kumamoto Prefecture. After BLV-infection, the PVL was significantly lower in JBRK cattle than that in JB and HF breeds. The genetic factors implicated in maintaining a low PVL have yet to be elucidated, but the BoLA-DRB3 haplotypes are likely not involved.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Bovinos , Animais , Vírus da Leucemia Bovina/genética , Antígenos de Histocompatibilidade Classe II/genética , Provírus/genética , Leucose Enzoótica Bovina/genética , Frequência do Gene
3.
Vet Microbiol ; 284: 109829, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451183

RESUMO

Enzootic bovine leukosis (EBL) is typically observed in cattle older than 3 years, but some cases of onset in cattle younger than 3 years have been reported in Japan. BoLA-DRB3 polymorphisms are associated with susceptibility to EBL onset. However, little is known about the relationship between the polymorphisms and EBL onset in young cattle. In the present study, we performed BoLA-DRB3 genotyping in 59 EBL cattle younger than 3 years (25 Holstein-Friesian and 34 Japanese Black) and compared the results with those of 69 EBL cattle older than 3 years (38 Holstein-Friesian and 31 Japanese Black). The BoLA-DRB3*15:01 allele was detected at a frequency of 37.3 % (48.0 % and 29.4 % in Holstein-Friesian and Japanese Black, respectively) and was identified as an early EBL onset susceptibility allele. Nine EBL cattle younger than 3 years (5 Holstein-Friesian and 4 Japanese Black), but only 1 EBL cattle older than 3 years (1 Holstein-Friesian), had a BoLA-DRB3*15:01/*15:01 homozygous genotype. The frequency of the BoLA-DRB3*15:01 allele occurring with a different allele (BoLA-DRB3*015:01/other) in cattle younger than 3 years was 44.1 % (56.0 % Holstein-Friesian and 35.3 % Japanese Black) and significantly higher than that in cattle older than 3 years (28.9 % Holstein-Friesian and 9.7 % Japanese Black) (P = 0.0013). These results suggest that BoLA-DRB3*15:01/*15:01 and BoLA-DRB3*15:01/other genotypes are early EBL onset susceptibility genotypes. The present findings may contribute to cattle breeding selection.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Bovinos/genética , Animais , Leucose Enzoótica Bovina/genética , Alelos , Antígenos de Histocompatibilidade Classe II/genética , Polimorfismo Genético
4.
Retrovirology ; 20(1): 11, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268923

RESUMO

Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leukosis, a disease characterized by the neoplastic proliferation of B cells in cattle. While most European countries have introduced efficient eradication programs, BLV is still present worldwide and no treatment is available. A major feature of BLV infection is the viral latency, which enables the escape from the host immune system, the maintenance of a persistent infection and ultimately the tumoral development. BLV latency is a multifactorial phenomenon resulting in the silencing of viral genes due to genetic and epigenetic repressions of the viral promoter located in the 5' Long Terminal Repeat (5'LTR). However, viral miRNAs and antisense transcripts are expressed from two different proviral regions, respectively the miRNA cluster and the 3'LTR. These latter transcripts are expressed despite the viral latency affecting the 5'LTR and are increasingly considered to take part in tumoral development. In the present review, we provide a summary of the experimental evidence that has enabled to characterize the molecular mechanisms regulating each of the three BLV transcriptional units, either through cis-regulatory elements or through epigenetic modifications. Additionally, we describe the recently identified BLV miRNAs and antisense transcripts and their implications in BLV-induced tumorigenesis. Finally, we discuss the relevance of BLV as an experimental model for the closely related human T-lymphotropic virus HTLV-1.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , MicroRNAs , Animais , Bovinos , Humanos , Fatores de Transcrição/genética , Vírus da Leucemia Bovina/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Epigênese Genética , Leucose Enzoótica Bovina/genética
5.
PLoS One ; 18(2): e0281317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730262

RESUMO

Bovine leukemia virus (BLV) is a retrovirus that causes malignant B-cell lymphoma in up to ten-percent of infected cattle. To date, the mechanisms of BLV linked to malignant transformation remain elusive. Although BLV-encoded miRNAs have been associated with the regulation of different genes involved in oncogenic pathways, this association has not been evaluated in cattle naturally infected with BLV. The objective of this study was to determine the relative expression of BLV-encoded miRNA blv-miR-b4-3p, the host analogous miRNA bo-miR-29a and a couple of potential target mRNAs (HBP-1 and PXDN, with anti-tumorigenic function in B-cells), in cattle naturally infected with BLV compared to uninfected animals (control group). We observed that PXDN was significantly downregulated in BLV-infected cattle (P = 0.03). Considering the similar expression of endogenous bo-miR-29a in both animal groups, the downregulation of PXDN in BLV-naturally infected cattle could be linked to blv-miR-b4-3p expression in these animals. Knowing that PXDN is involved in anti-tumoral pathways in B-cells, the results presented here suggest that blv-miR-b4-3p might be involved in BLV tumorigenesis during natural infection with BLV in cattle.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Linfoma de Células B , MicroRNAs , Neoplasias , Animais , Bovinos , MicroRNAs/genética , Vírus da Leucemia Bovina/genética , Linfócitos B , Leucose Enzoótica Bovina/genética
6.
mSphere ; 8(1): e0049322, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36625728

RESUMO

In the transmission control of chronic and untreatable livestock diseases such as bovine leukemia virus (BLV) infection, the removal of viral superspreaders is a fundamental approach. On the other hand, selective breeding of cattle with BLV-resistant capacity is also critical for reducing the viral damage to productivity by keeping infected cattle. To provide a way of measuring BLV proviral load (PVL) and identifying susceptible/resistant cattle simply and rapidly, we developed a fourplex droplet digital PCR method targeting the BLV pol gene, BLV-susceptible bovine major histocompatibility complex (BoLA)-DRB3*016:01 allele, resistant DRB3*009:02 allele, and housekeeping RPP30 gene (IPATS-BLV). IPATS-BLV successfully measured the percentage of BLV-infected cells and determined allele types precisely. Furthermore, it discriminated homozygous from heterozygous carriers. Using this method to determine the impact of carrying these alleles on the BLV PVL, we found DRB3*009:02-carrying cattle could suppress the PVL to a low or undetectable level, even with the presence of a susceptible heterozygous allele. Although the population of DRB3*016:01-carrying cattle showed significantly higher PVLs compared with cattle carrying other alleles, their individual PVLs were highly variable. Because of the simplicity and speed of this single-well assay, our method has the potential of being a suitable platform for the combined diagnosis of pathogen level and host biomarkers in other infectious diseases satisfying the two following characteristics of disease outcomes: (i) pathogen level acts as a critical maker of disease progression; and (ii) impactful disease-related host genetic biomarkers are already identified. IMPORTANCE While pathogen-level quantification is an important diagnostic of disease severity and transmissibility, disease-related host biomarkers are also useful in predicting outcomes in infectious diseases. In this study, we demonstrate that combined proviral load (PVL) and host biomarker diagnostics can be used to detect bovine leukemia virus (BLV) infection, which has a negative economic impact on the cattle industry. We developed a fourplex droplet digital PCR assay for PVL of BLV and susceptible and resistant host genes named IPATS-BLV. IPATS-BLV has inherent merits in measuring PVL and identifying susceptible and resistant cattle with superior simplicity and speed because of a single-well assay. Our new laboratory technique contributes to strengthening risk-based herd management used to control within-herd BLV transmission. Furthermore, this assay design potentially improves the diagnostics of other infectious diseases by combining the pathogen level and disease-related host genetic biomarker to predict disease outcomes.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Reação em Cadeia da Polimerase , Animais , Bovinos , Alelos , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/genética , Suscetibilidade a Doenças , Leucose Enzoótica Bovina/diagnóstico , Leucose Enzoótica Bovina/genética , Marcadores Genéticos , Antígenos de Histocompatibilidade Classe II/genética , Vírus da Leucemia Bovina/genética , Reação em Cadeia da Polimerase/métodos
7.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142686

RESUMO

Enzootic bovine leukosis (EBL) is a B-cell lymphosarcoma caused by the bovine leukemia virus (BLV). Most BLV-infected cattle show no clinical signs and only some develop EBL. The pathogenesis of EBL remains unclear and there are no methods for predicting EBL before its onset. Previously, it was reported that miRNA profiles in milk small extracellular vesicles (sEVs) were affected in cattle in the late stage of BLV infection. It raised a possibility that miRNA profile in milk sEVs from EBL cattle could be also affected. To characterize the difference in milk of EBL cattle and healthy cattle, we examined the miRNA profiles in milk sEVs from four EBL and BLV-uninfected cattle each using microarray analysis. Among the detected miRNAs, three miRNAs-bta-miR-1246, hsa-miR-1290, and hsa-miR-424-5p-which were detectable using quantitative real-time PCR (qPCR) and are associated with cancers in humans-were selected as biomarker candidates for EBL. To evaluate the utility of these miRNAs as biomarkers for EBL, their levels were measured using milk that was freshly collected from 13 EBL and seven BLV-uninfected cattle. bta-miR-1246 and hsa-miR-424-5p, but not hsa-miR-1290, were detected using qPCR and their levels in milk sEVs from EBL cattle were significantly higher than those in BLV-uninfected cattle. bta-miR-1246 and hsa-miR-424-5p in sEVs may promote metastasis by targeting tumor suppressor genes, resulting in increased amounts in milk sEVs in EBL cattle. These results suggest that bta-miR-1246 and hsa-miR-424-5p levels in milk sEVs could serve as biomarkers for EBL.


Assuntos
Leucose Enzoótica Bovina , Vesículas Extracelulares , Vírus da Leucemia Bovina , MicroRNAs , Animais , Biomarcadores , Bovinos , Leucose Enzoótica Bovina/diagnóstico , Leucose Enzoótica Bovina/genética , Vesículas Extracelulares/genética , Humanos , Vírus da Leucemia Bovina/genética , MicroRNAs/genética , Leite
8.
HLA ; 99(1): 12-24, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837483

RESUMO

As genetically resistant individuals, the "elite controllers" (ECs) of human immunodeficiency virus infection have been focused on as the keys to developing further functional treatments in medicine. In the livestock production field, identifying the ECs of bovine leukemia virus (BLV) infection in cattle is desired to stop BLV transmission chains on farms. Cattle carrying the bovine leukocyte antigen (BoLA)-DRB3*009:02 allele (DRB3*009:02) have a strong possibility of being BLV ECs. Most of cattle carrying this allele maintain undetectable BLV proviral loads and do not shed virus even when infected. BLV ECs can act as transmission barriers when placed between uninfected and infected cattle in a barn. To identify cattle carrying DRB3*009:02 in large populations more easily, we developed a pooled testing system. It employs a highly sensitive, specific real-time PCR assay and TaqMan MGB probes (DRB3*009:02-TaqMan assay). Using this system, we determined the percentage of DRB3*009:02-carrying cattle on Kyushu Island, Japan. Our pooled testing system detected cattle carrying the DRB3*009:02 allele from a DNA pool containing one DRB3*009:02-positive animal and 29 cattle with other alleles. Its capacity is sufficient for herd-level screening for DRB3*009:02-carrying cattle. The DRB3*009:02-TaqMan assay showed high-discriminative sensitivity and specificity toward DRB3*009:02, making it suitable for identifying DRB3*009:02-carrying cattle in post-screening tests on individuals. We determined that the percentage of DRB3*009:02-carrying cattle in Kyushu Island was 10.56%. With its ease of use and reliable detection, this new method strengthens the laboratory typing for DRB3*009:02-carrying cattle. Thus, our findings support the use of BLV ECs in the field.


Assuntos
Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Alelos , Animais , Bovinos/genética , Leucose Enzoótica Bovina/diagnóstico , Leucose Enzoótica Bovina/genética , Haplótipos , Antígenos de Histocompatibilidade Classe II/genética , Vírus da Leucemia Bovina/genética , Carga Viral
9.
Vet Microbiol ; 263: 109269, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34781193

RESUMO

Enzootic bovine leukosis (EBL) is a B-cell lymphoma caused by the bovine leukemia virus (BLV). Although an association between EBL and mutations in the bovine tumor suppressor gene TP53 (bTP53) has been suggested, the substantive incidence rate of bTP53 mutations in EBL cattle is still unclear. In this study, we investigated the complete sequence (exons 2-11) of bTP53 in tissue and peripheral blood leukocyte (PBL) samples obtained from 154 EBL cattle and 117 cattle without EBL (non-EBL cattle) to elucidate the correlation between bTP53 mutations and EBL. The detection frequencies of non-synonymous (NS) and deletion mutations in bTP53 in EBL cattle were significantly higher than those in non-EBL cattle in both tissue and PBL samples (p < 0.05). Among these mutations in EBL cattle, 73.7 % (42/54) were homologous to those of human TP53 (hTP53), which were previously detected in various tumors. It has been reported that 95.2 % (40/42) of these hTP53 mutations induced complete or partial loss of the transactivating function of its encoding protein, P53. Moreover, the BLV proviral load in tissue samples was significantly higher in cattle harboring bTP53 NS and deletion mutations than in cattle without these mutations in both EBL and BLV-infected non-EBL cattle (p < 0.05). Although the activity of the mutant variants of bP53 must be further investigated, our findings revealed that bTP53 mutations are involved in tumorigenesis in BLV-infected cells and EBL-associated carcinogenesis.


Assuntos
Leucose Enzoótica Bovina , Proteína Supressora de Tumor p53 , Animais , Bovinos/genética , Leucose Enzoótica Bovina/genética , Vírus da Leucemia Bovina/fisiologia , Mutação , Proteína Supressora de Tumor p53/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-34064361

RESUMO

Bovine leukemia virus (BLV) is the causative agent of leukemia/lymphoma in cattle. It has been found in humans and cattle-derived food products. In humans, it is described as a potential risk factor for breast cancer development. However, the transmission path remains unclear. Here, a molecular epidemiology analysis was performed to identify signatures of genetic flux of BLV among humans, animals, and food products. Sequences obtained from these sources in Colombia were used (n = 183) and compared with reference sequences available in GenBank. Phylogenetic reconstruction was performed in IQ-TREE software with the maximum likelihood algorithm. Haplotype (hap) distribution among the population was carried out with a median-joining model in Network5.0. Recombination events were inferred using SplitsTree4 software. In the phylogenetic analysis, no specific branches were identified for the Colombian sequences or for the different sources. A total of 31 haps were found, with Hap 1, 4, 5 and 7 being shared among the three sources of the study. Reticulation events among the different sources were also detected during the recombination analysis. These results show new insights about the zoonotic potential of BLV, showing evidence of genetic flux between cattle and humans. Prevention and control strategies should be considered to avoid viral dissemination as part of the One Health program policies.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Colômbia/epidemiologia , Leucose Enzoótica Bovina/epidemiologia , Leucose Enzoótica Bovina/genética , Haplótipos , Humanos , Vírus da Leucemia Bovina/genética , Filogenia
11.
J Vet Med Sci ; 83(6): 898-904, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-33840719

RESUMO

Enzootic bovine leukosis (EBL) is typically observed in cattle over 3 years old. However, some cases of EBL onset in young beef cattle have been reported in Japan. The mechanism for early EBL onset is unclear. In Japan, beef cattle are given large amounts of concentrated feed with low vitamin A. Bone morphogenetic proteins (BMPs) are regulators of cell proliferation, differentiation, and apoptosis, and thought to represent one of the key players in tumor malignancy. The purpose of this study was to evaluate the differences in BMP-6 methylation status between EBL beef cattle under 3 years old and other cattle. We investigated the methylation status of the BMP-6 promoter region in 32 EBL beef cattle under 3 years old. We also compared the methylation status of EBL dairy cattle to that of healthy cattle. Median methylation rate of the BMP-6 promoter region in EBL beef cattle under 3 years old was 8.9%, which was significantly higher than that of other groups. Hypermethylation of the BMP-6 promoter region might contribute to early onset of EBL in beef cattle under 3 years old, and animal feeding management practices specific to beef cattle may affect the methylation status of the BMP-6 promoter region.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Proteína Morfogenética Óssea 6 , Bovinos , Leucose Enzoótica Bovina/genética , Japão , Regiões Promotoras Genéticas
12.
Sci Rep ; 11(1): 4521, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633166

RESUMO

Bovine leukemia virus (BLV) is an oncogenic retrovirus which induces malignant lymphoma termed enzootic bovine leukosis (EBL) after a long incubation period. Insertion sites of the BLV proviral genome as well as the associations between disease progression and polymorphisms of the virus and host genome are not fully understood. To characterize the biological coherence between virus and host, we developed a DNA-capture-seq approach, in which DNA probes were used to efficiently enrich target sequence reads from the next-generation sequencing (NGS) library. In addition, enriched reads can also be analyzed for detection of proviral integration sites and clonal expansion of infected cells since the reads include chimeric reads of the host and proviral genomes. To validate this DNA-capture-seq approach, a persistently BLV-infected fetal lamb kidney cell line (FLK-BLV), four EBL tumor samples and four non-EBL blood samples were analyzed to identify BLV integration sites. The results showed efficient enrichment of target sequence reads and oligoclonal integrations of the BLV proviral genome in the FLK-BLV cell line. Moreover, three out of four EBL tumor samples displayed multiple integration sites of the BLV proviral genome, while one sample displayed a single integration site. In this study, we found the evidence for the first time that the integrated provirus defective at the 5' end was present in the persistent lymphocytosis cattle. The efficient and sensitive identification of BLV variability, integration sites and clonal expansion described in this study provide support for use of this innovative tool for understanding the detailed mechanisms of BLV infection during the course of disease progression.


Assuntos
Leucose Enzoótica Bovina/genética , Leucose Enzoótica Bovina/virologia , Genoma Viral , Genômica , Interações Hospedeiro-Patógeno/genética , Vírus da Leucemia Bovina/genética , Polimorfismo de Nucleotídeo Único , Integração Viral , Animais , Bovinos , Suscetibilidade a Doenças , Predisposição Genética para Doença , Variação Genética , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta
13.
J Dairy Sci ; 104(2): 1993-2007, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33246606

RESUMO

In dairy cattle infected with bovine leukemia virus (BLV), the proviral load (PVL) level is directly related to the viral transmission from infected animals to their healthy herdmates. Two contrasting phenotypic groups can be identified when assessing PVL in peripheral blood of infected cows. A large number of reports point to bovine genetic variants (single nucleotide polymorphisms) as one of the key determinants underlying PVL level. However, biological mechanisms driving BLV PVL profiles and infection progression in cattle have not yet been elucidated. In this study, we evaluated whether a set of candidate genes affecting BLV PVL level according to whole genome association studies are differentially expressed in peripheral blood mononuclear cells derived from phenotypically contrasting groups of BLV-infected cows. During a 10-mo-long sampling scheme, 129 Holstein cows were phenotyped measuring anti-BLV antibody levels, PVL quantification, and white blood cell subpopulation counts. Finally, the expression of 8 genes (BOLA-DRB3, PRRC2A, ABT1, TNF, BAG6, BOLA-A, LY6G5B, and IER3) located within the bovine major histocompatibility complex region harboring whole genome association SNP hits was evaluated in 2 phenotypic groups: high PVL (n = 7) and low PVL (n = 8). The log2 initial fluorescence value (N0) transformed mean expression values for the ABT1 transcription factor were statistically different in high- and low-PVL groups, showing a higher expression of the ABT1 gene in low-PVL cows. The PRRC2A and IER3 genes had a significant positive (correlation coefficient = 0.61) and negative (correlation coefficient = -0.45) correlation with the lymphocyte counts, respectively. Additionally, the relationships between gene expression values and lymphocyte counts were modeled using linear regressions. Lymphocyte levels in infected cows were better explained (coefficient of determination = 0.56) when fitted a multiple linear regression model using both PRRC2A and IER3 expression values as independent variables. The present study showed evidence of differential gene expression between contrasting BLV infection phenotypes. These genes have not been previously related to BLV pathobiology. This valuable information represents a step forward in understanding the BLV biology and the immune response of naturally infected cows under a commercial milk production system. Efforts to elucidate biological mechanisms leading to BLV infection progression in cows are valuable for BLV control programs. Further studies integrating genotypic data, global transcriptome analysis, and BLV progression phenotypes are needed to better understand the BLV-host interaction.


Assuntos
Leucose Enzoótica Bovina/genética , Vírus da Leucemia Bovina/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Animais , Bovinos , Leucose Enzoótica Bovina/virologia , Feminino , Estudo de Associação Genômica Ampla/veterinária , Contagem de Leucócitos/veterinária , Leucócitos/virologia , Leucócitos Mononucleares/virologia , Contagem de Linfócitos/veterinária , Fenótipo , Provírus/fisiologia , Carga Viral/veterinária
14.
Acta Virol ; 64(4): 451-456, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33151739

RESUMO

Bovine leukemia virus (BLV) is a retrovirus that affects primarily milky cows. Animals serologically positive to BLV show a Th1 cytokine profile with a predominance of interferon gamma (IFN-γ). IFN-γ has antiviral activity through mechanisms such as resistance to infection, inhibition of viral replication and apoptosis. The objective of this work was to determine the transcription levels of IFN-γ and its relationship with proviral load and persistent lymphocytosis in a population of Holstein cows of the province of Antioquia, Colombia. IFN-γ transcription levels were evaluated by qPCR in 140 Holstein cows. A one-way analysis of variance and a Student's t test were used to evaluate the differences between the means. The amount of IFN-γ mRNA found in BLV-positive cows was lower than in BLV-negative cows. Moreover, in the group of infected cows a lower level of IFN-γ mRNA expression was found in BLV and persistent lymphocytosis cows (BLV+PL) compared with BLV and aleukemia cows (BLV+AL). The level of IFN-γ mRNA expression was lower in cows with high proviral load (HPL) compared to cows with low proviral load (LPL). BLV infection is related to abnormal expression of IFN-γ mRNA, although IFN-γ has antiviral activity, its expression is affected by high proviral load. Keywords: cytokine; immune system; leukemia; bovine leukemia virus.


Assuntos
Leucose Enzoótica Bovina/imunologia , Interferon gama/genética , Linfocitose/veterinária , Carga Viral , Animais , Bovinos , Colômbia , Leucose Enzoótica Bovina/genética , Humanos , Vírus da Leucemia Bovina , Linfocitose/genética , Provírus , RNA Mensageiro
15.
BMC Vet Res ; 16(1): 407, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115449

RESUMO

BACKGROUND: Infection with bovine leukemia virus (BLV), the causative agent for enzootic bovine leukosis (EBL), is increasing in dairy farms of Japan. The tendency of tumor development following BLV infection in certain cow families and bull lines has previously been described. We therefore hypothesized the existence of a genetic component which differentiates cattle susceptibility to the disease. RESULTS: We analyzed routinely collected large-scale data including postmortem inspection data, which were combined with pedigree information and epidemiological data of BLV infection. A total of 6,022 postmortem inspection records of Holstein cattle, raised on 226 farms served by a regional abattoir over 10 years from 2004 to 2015, were analyzed for associations between sire information and EBL development. We then identified statistically the relative susceptibility to EBL development for the progeny of specific sires and paternal grandsires (PGSs). The heritability of EBL development was calculated as 0.19. Similarly, proviral loads (PVLs) of progeny from identified sires and PGSs were analyzed, but no significant differences were found. CONCLUSIONS: These observations suggest that because EBL development in our Holstein population is, at least in part, influenced by genetic factors independent of PVL levels, genetic improvement for lower incidence of EBL development in cattle notwithstanding BLV infection is possible.


Assuntos
Leucose Enzoótica Bovina/genética , Predisposição Genética para Doença , Animais , Bovinos , Leucose Enzoótica Bovina/epidemiologia , Leucose Enzoótica Bovina/virologia , Feminino , Japão/epidemiologia , Vírus da Leucemia Bovina , Masculino , Linhagem , Provírus , Carga Viral/veterinária
16.
Lett Appl Microbiol ; 71(6): 560-566, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32852051

RESUMO

Along with progress in globalization of society, the spread of infectious diseases has accelerated worldwide. The deployment of highly sensitive genetic tests is essential for early diagnosis and early containment of potential outbreaks and epidemics, as well as routine surveillance, although tedious and expensive nucleic acid extraction steps represent a major drawback. Here we developed a simple and rapid DNA extraction method, named as an EZ-Fast kit, applicable to the field setting. The kit does not require advanced laboratory equipment or expensive DNA extraction kits and achieves crude DNA extraction within 10 min at extremely low cost and can easily be performed in field settings. When combined with real-time PCR and LAMP analyses, the performance of the POCT, using 183 bovine blood samples, was similar to that of the existing DNA extraction method: 92·5% (135/146) (real-time PCR) and 93·7% (133/142) (LAMP) diagnostic sensitivities, and 100% diagnostic specificities. The developed POCT provides a powerful tool to facilitate on-site diagnosis in a field setting.


Assuntos
DNA/genética , Testes Diagnósticos de Rotina/métodos , Leucose Enzoótica Bovina/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Bovinos , DNA/sangue , Leucose Enzoótica Bovina/sangue , Leucose Enzoótica Bovina/genética , Técnicas de Amplificação de Ácido Nucleico/veterinária , Testes Imediatos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Sensibilidade e Especificidade
17.
PLoS One ; 15(6): e0234939, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579585

RESUMO

Bovine leukemia virus (BLV) is a δ-retrovirus responsible for Enzootic Bovine Leukosis (EBL), a lymphoproliferative disease that affects cattle. The virus causes immune system deregulation, favoring the development of secondary infections. In that context, mastitis incidence is believed to be increased in BLV infected cattle. The aim of this study was to analyze the transcriptome profile of a BLV infected mammary epithelial cell line (MAC-T). Our results show that BLV infected MAC-T cells have an altered expression of IFN I signal pathway and genes involved in defense response to virus, as well as a collagen catabolic process and some protooncogenes and tumor suppressor genes. Our results provide evidence to better understand the effect of BLV on bovine mammary epithelial cell's immune response.


Assuntos
Leucose Enzoótica Bovina/genética , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Vírus da Leucemia Bovina/fisiologia , Glândulas Mamárias Animais/patologia , RNA-Seq , Transcriptoma/genética , Animais , Bovinos , Linhagem Celular , Análise por Conglomerados , Feminino , Regulação da Expressão Gênica , Genoma , Análise de Componente Principal
18.
Viruses ; 12(6)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560231

RESUMO

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle and is closely related to human T-cell leukemia viruses. We investigated the role of a new host protein, PRMT5, in BLV infection. We found that PRMT5 is overexpressed only in BLV-infected cattle with a high proviral load, but not in those with a low proviral load. Furthermore, this upregulation continued to the lymphoma stage. PRMT5 expression was upregulated in response to experimental BLV infection; moreover, PRMT5 upregulation began in an early stage of BLV infection rather than after a long period of proviral latency. Second, siRNA-mediated PRMT5 knockdown enhanced BLV gene expression at the transcript and protein levels. Additionally, a selective small-molecule inhibitor of PRMT5 (CMP5) enhanced BLV gene expression. Interestingly, CMP5 treatment, but not siRNA knockdown, altered the gp51 glycosylation pattern and increased the molecular weight of gp51, thereby decreasing BLV-induced syncytium formation. This was supported by the observation that CMP5 treatment enhanced the formation of the complex type of N-glycan more than the high mannose type. In conclusion, PRMT5 overexpression is related to the development of BLV infection with a high proviral load and lymphoma stage and PRMT5 inhibition enhances BLV gene expression. This is the first study to investigate the role of PRMT5 in BLV infection in vivo and in vitro and to reveal a novel function for a small-molecule compound in BLV-gp51 glycosylation processing.


Assuntos
Leucose Enzoótica Bovina/enzimologia , Leucose Enzoótica Bovina/virologia , Células Gigantes/virologia , Vírus da Leucemia Bovina/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Bovinos , Leucose Enzoótica Bovina/genética , Regulação Viral da Expressão Gênica , Células Gigantes/enzimologia , Glicosilação , Interações Hospedeiro-Patógeno , Proteína-Arginina N-Metiltransferases/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Vet Res ; 51(1): 4, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931875

RESUMO

Cattle maintaining a low proviral load (LPL) status after bovine leukaemia virus (BLV) infection have been recognized as BLV controllers and non-transmitters to uninfected cattle in experimental and natural conditions. LPL has been associated with host genetics, mainly with the BoLA class II DRB3 gene. The aim of this work was to study the kinetics of BLV and the host response in Holstein calves carrying different BoLA-DRB3 alleles. Twenty BLV-free calves were inoculated with infected lymphocytes. Two calves were maintained uninfected as controls. Proviral load, total leukocyte and lymphocyte counts, anti-BLVgp51 titres and BLVp24 expression levels were determined in blood samples at various times post-inoculation. The viral load peaked at 30 days post-inoculation (dpi) in all animals. The viral load decreased steadily from seroconversion (38 dpi) to the end of the study (178 dpi) in calves carrying a resistance-associated allele (*0902), while it was maintained at elevated levels in calves with *1501 or neutral alleles after seroconversion. Leukocyte and lymphocyte counts and BLVp24 expression did not significantly differ between genetic groups. Animals with < 20 proviral copies/30 ng of DNA at 178 dpi or < 200 proviral copies at 88 dpi were classified as LPL, while calves with levels above these limits were considered to have high proviral load (HPL) profiles. All six calves with the *1501 allele progressed to HPL, while LPL was attained by 6/7 (86%) and 2/6 (33%) of the calves with the *0902 and neutral alleles, respectively. One calf with both *0902 and *1501 developed LPL. This is the first report of experimental induction of the LPL profile in cattle.


Assuntos
Resistência à Doença , Suscetibilidade a Doenças/veterinária , Leucose Enzoótica Bovina/fisiopatologia , Antígenos de Histocompatibilidade Classe II/genética , Vírus da Leucemia Bovina/fisiologia , Carga Viral , Alelos , Animais , Bovinos , Leucose Enzoótica Bovina/genética , Leucose Enzoótica Bovina/virologia , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe II/imunologia
20.
Virulence ; 11(1): 80-87, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31885330

RESUMO

Bovine leukemia virus (BLV) is an oncogenic retrovirus of the Deltaretrovirus genus, which causes persistent infection in its natural hosts - cattle, zebu, and water buffalo with diverse clinical manifestations through the defeat of B-cells. The BLV proviral genome, along with structural genes (gag, pro, pol, and env), includes nonstructural ones (R3, G4, tax, rex, AS, pre-miRs (for miRNAs). We have shown in our previous data the association of some pre-miRs-B' (for BLV miRNA) alleles with leukocyte (WBC - white blood cell) number in BLV-infected cows. Multifunctional properties of Tax protein have led us to an assumption that tax gene/Tax protein could have too population variations related to WBC counts. Here we report about several tax alleles/Tax protein variants, which have a highly significant association with an increase or a decrease of WBC number in BLV-infected cows. We have provided evidence that Tax A, H variants (tax b, c, d, f, e alleles) are correlated with reduced WBC counts at the level of BLV-negative groups of animals and thus could be the feature of the aleukemic (AL) form of BLV infection. We suggest this finding could be used in BLV testing for the presence of Tax A, H in the proviral DNA consider such strains of BLV as AL ones, and because of this, minimize the clinical losses due to BLV infection in cattle.


Assuntos
Leucose Enzoótica Bovina/genética , Leucose Enzoótica Bovina/virologia , Produtos do Gene tax/genética , Genes pX , Vírus da Leucemia Bovina/genética , Alelos , Sequência de Aminoácidos , Animais , Linfócitos B , Bovinos , Doenças dos Bovinos/virologia , Evolução Molecular , Feminino , Produtos do Gene tax/classificação , Polimorfismo Genético , Alinhamento de Sequência , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...